κεφάλαιο 21 (χρώμα annex)
color bar
Τα βασικά χρώματα σύμφωνα με τον Νεύτωνα, ως κάρτα στην τιβι.
και τα βασικά χρώματα σύμφωνα με τον Πλάτωνα.
test screen
how the evolution of palettes changed the world iweb
the Evolution of Palettes

September 23, 2012
Queen Victoria, was an style icon.
in 1858 the unusual color of its velvet bodice and petticoat laces.
It was a sumptuous shade of pale purple, which was the product of a botched experiment by William Henry Perkin. While trying to invent an anti-malarial drug in 1856, he noticed that his formula had stained a cotton rag in a beautiful lilac or mauve hue. Perkin abandoned his studies to commercialize his discovery.The new color was nicknamed Queen’s Lilac.

“The Color Revolution,” by the cultural historian Regina Lee Blaszczyk. Exploring the use of color by American manufacturers from the mid-1800s when scientists, it shows what a powerful force color has been — socially, culturally and economically.

Color also featured in the “Sumptuary

Laws,” which were introduced by many countries during the Middle Ages to regulate what people from different social classes were allowed to wear, principally to prevent pushy arrivistes from dressing “above their station.”
King Henry VIII, insisted on being the only person in the country to be permitted to wear purple during his reign. Up until the mid-19th century, bright colors were the preserve of the wealthy, the only people who could afford them. The development of chemical dyes, enabled more shades to be created in brighter, longer lasting hues. People responded by choosing the vivid colors that had until then been denied them when clothing themselves and furnishing their homes, prompting the upper classes to choose subtler shades as a form of snobbish protest.
A new profession emerged, the “color stylists” or “color engineers”. Many of the earliest color professionals were artists, who applied the principles of the early 19th-century French color theorist, Michel-Eugène Chevreul, to commercial ends.
He studied the effect of placing different hues together, and of looking at one shade after prolonged exposure to another. Among his American admirers was Albert H. Munsell. He devised contraptions, like the Munsell Color Sphere, to choose appealing combinations of colors for manufacturers to adopt, generally in the unobtrusive tones that he liked best.
By the 1910s, the approach advocated by theoreticians like Frederick Winslow Taylor was becoming popular, and color was identified as a problematic area, because of its unpredictability.
If a manufacturer of furniture or dresses ordered fabric and trimmings, which were both described as “scarlet,” they often turned out to be different hues. and the U.S. government encouraged various industries to standardize colors in an attempt to reduce wastage.
A new genre of color expert emerged in the artists who had disguised warships and military trunks by painting camouflage patterns.
One “camoufleur,” the H. Ledyard Towle advised the chemical company DuPont on color after the war, and moved to Detroit in 1928 to work for General Motors as its first “color engineer. They drew on the sales data provided by G.M.’s dealerships to develop a systematic approach to selecting the shades.
Τhe color trade was a field where women could flourish. Margaret Hayden Rorke, championed color standardization. And Hazel Adler made her name during Prohibition in the 1920s by advising New York State to change the color of its car license plates from gray and white to black and yellow. Combining psychological insights into consumer preferences with statistics and trend information, she then became a color consultant to Sears Roebuck, Ford and other companies.
Color experts were deemed indispensable in business, and postwar American consumers had a seemingly limitless choice of hues.
They were even given their equivalent of Queen’s Lilac in 1953 when America’s new first lady, Mamie Eisenhower, donned a sparkly gown for her husband’s presidential inauguration in a pretty pastel shade that she allowed to be called First Lady Pink.*
An advertisement for Monsanto Plastics, Fortune, 1939.
A Buick ad
from May 1928
showing a car with a polychrome paint job.
A Kellogg’s Corn Flakes advertisement in Youth’s Companion (Nov. 5, 1908) used the subtle tones that Munsell favored.
From: Kremer Pigmente GmbH & Co. KG news@kremer-pigmente.de iweb
Subject: Newsletter from the Color-Mill Date: 27 May 2016
Alizarine Madder Lakes
is an organic compound that is historically important as a prominent dye. It is an anthraquinone originally derived from the root of the madder plant. In 1869, it became the first natural pigment to be duplicated synthetically. Madder was used in ancient Egypt, Greece, and Rome for dyeing textiles and, to some extent, for making pigments. It was said to have been introduced into Italy by the Crusaders. By the 13the century, madder was being cultivated on a fairly large scale in Europe, but there is not evidence of its use in medieval or Renaissance painting. Madder lake was most widely used in the 18th and 19th century, though never as extensively as the ruby-like lakes made from kermes, cochineal, brazilwood, and lac. In 1826 two French chemists, Robiquet and Colin, isolated the coloring principles of madder – alizarin and purpurin – by treating the root with sulfuric acid. The resulting extract, known as garancine, was used to make madder lakes, rose madder, and madder carmine. Prior to this improvement, madder lake had been so costly that its use was confined to miniature painting. For fifty years afterward, no other ruby-red or rose-pink coloring matter gave better or more permanent results. Synthetic alizarin was first made in 1868. In the following years, madder lake was superseded by alizarin crimson, a pigment superior to it in every respect. Synthetic alizarin did not replace natural madder immediately. The French government attempted to protect its madder-growing industry by making it mandatory to use madder in dyeing trousers for the army. Since many 19th-century painters believed that alizarin did not have the delicacy of subtlety of rose madder, the latter continued to be available into the 20th century. Today, most painters prefer alizarin, but a few artists ́colors made from rose madder can still be found among the European brands. In typical form, rose madder is a very pale pink powder; in oil and watercolor, it seems like alizarin crimson enormously reduced with alumina hydrate. When viewed by transmitted light, paint films of rose madder have a pronounced bluish undertone.
Chemical composition: HgS mineral mercuric sulfide Mineral cinnabar is the principal ore of the metal mercury. The crushed ground ore served directly as a pigment for centuries. The historic sources for cinnabar were the famous Almaden mines in Spain which are still the world's most important source of mercury. Cinnabar is fairly widely distributed in nature and sources are known in England, Spain, Italy, China, Japan, California, Mexico and Peru. Cinnabar is the common red crystalline form of mercuric sulfide. Vermilion is the standard name in England and the United States given to the red artists' pigment based on artificially made mercuric sulfide. Artificial cinnabar was manufactured very early on. Geber (Jabir), the eighth- to ninth-century Arabic alchemist mentions a red compound formed by the union of sulfur and mercury. The pigment has been known in China since prehistoric times and it has long been held in high esteem there. The artificial dryprocess vermilion does not differ from the natural mineral. Impurities in vermilion are no satisfactory criterion of origin, however, since very pure, natural cinnabar frequently occurs in nature. Artificial vermilion, produced by the wet-process, contains very finely divided and homogeneous particles. Cinnabar is coarsely crystalline and has a bluish, carmine red color. When it is finely ground, the color approaches a reddish orange. Cinnabar and vermilion are permanent pigments. Although it is a sulfide, it is not reactive with other pigments. In oil-medium, it was commonly used with lead white to produce flesh tints.
We present our choice of new product highlights: Spring News from the Color-Mill We present you new Pigments, Mediums, Binders, Solvents, Plant-Watercolors, Wall Paints, Linen, Canvas Frames, Brushes, Tools and Books. Be inspired by our spring news and immerse yourself in the world of colorful pigments and new opportunities for working techniques. All new products can also be found at www.kremer-pigmente.com.
Indigo is an organic blackish blue pigment. Natural indigo was the only source of the dye until the late 19th century. Today indigo is also produced synthetically and available in various shades. A variety of plants, such as Indigofera species or Isatis tinctoria, provide the indigo dye. Indigofera species can be found all over the world. The dye is obtained from the processing of the plant's leaves. The leaves are soaked in water and fermented in order to convert the glycoside indican naturally present in the plant to the blue dye idigotin. The precipitate is mixed with a strong base such as lye, pressed into cakes, dried, and powdered. The powder is then mixed with various other substances to produce different shades of blue and purple. Indigo is among the oldest dyes to be used for textile dyeing. For centuries Indigo was used in many Asian countries, also in Mesopotamia, Egypt, Greece, Peru and Africa. The Romans used indigo as a pigment for painting and for medicinal and cosmetic purposes. It was a luxury item imported to the Mediterranean from India by Arab merchants. Indigo has been used in traditional textile dying throughout West Africa. From the Tuareg nomads of the Sahara to Cameroon, clothes dyed with indigo signified wealth. Natural indigo is not soluble in water or in alcohol. To be dissolved, it must undergo a chemical change: an alkaline solution containing a reduction agent reduces the water-insoluble indigo to a soluble substance known as indigo white or leucoindigo. When a submerged fabric is removed from the dyebath, the indigo white quickly combines with oxygen in the air and reverts to its insoluble form (giving the blue color)
Ochre – a natural earthpigment
The color designation „Ochre“ speaks for itself, every child knows what it means. Correctly formulated is it a crushed, grayish orange yellow. The bright ochre varieties are the most common, which are known as “Light Ochre” or “Yellow Ochre”. Additional variations are Dark Ochre, Gold Ochre and Red Ochre, including lots of various nuances. Because ochre can be found frequently in nature and has no special difficulties in processing, it has been used as a color for painting since ancient times; for example for the cave drawings from Altamira. The ancient Greeks called ochre “Ochra” and the Romans “Sil”. French Ochre is amongst the most highly valued ochre varieties. The different qualities are offered under a defined letter code. In the Departement Vaucluse near Apt and Roussillon the world famous ochre mines are located. The sediments of Roussillon are cretaceous marine sand deposits, a layer is rarely recognized. The color of the sediment is a secondary appearance. On the sand a layer of limonite has been deposited, the different color stems from the weathering product of this layer. Other varieties of ochre can be found in Italy, England and in some cases also in Germany. “Amberg Yellow” is a German ochre variety, favored within the design of historic buildings in the Bavarian region. “Satin Ochre” refers to an orange-gold ochre shade. “Oxide Yellow” is a synthetically produced ocher shade, which is replacing the natural product increasingly. All ochre varieties are semitransparent or opaque pigments, completely lightfast and compatible with all common binders. Therefore ochre is an universal pigment, which can be used in every technique. Ochre glazes have a slight cloudy effect, which is used specifically for certain effects and in landscape painting ochre is used for mixing natural green shades. Mixing an ochre nuance out of basic colors would be much complicated and timeconsuming. Small additions of ochre are essential for the illustration of air in portrait painting and to refract very colorful shades. A thin layer of ochre gives watercolors a harmonious composite of light.
Kremer Pigmente Purple – Color of Imperators and Kings
Tyrian purple was one of the most costly organic coloring matters of the ancients. It was prepared from several mollusks or whelks, including Murex brandaris and Purpura haemostoma, which are found on the shores of the Mediterranean and Atlantic coasts. Huge quantities of these mollusks were used for dyeing fabrics in classical times. We produce Tyrian purple from the shellfish, Purpura Lapillus, which excretes the fluid from which the dye is gained. Traditionally marking the dress of emperors, kings and chief magistrates, 1 gram of this dye is made from the secretion of 10,000 of these large sea snails. This purple color is remarkably stable, resisting alkalis, soap, and most acids. It is insoluble in most organic solvents. Tyrian purple was used in the preparation of a purple ink and in dyeing parchments upon which the codices of Byzantium were written. Whelks that produce the purple dye, are also found on the coasts of the British Isles, and they furnished the purple color for some of the early English, Irish and French manuscripts (Thompson). The color went out of use in about the 8th century, though it may have been used occasionally up until the 11th century.
Acrylic Gesso
Applied as a thin ground on canvas or paper, this gesso provides an elastic surface. Thicker gesso layers can be sanded if applied onto wood.
200 g Marble Dust,extra white (#58500)
400 g Blanc Fixe (#58700)
150 ml Plextol® D 498 (#76000)
10 g Cellulose Glue K 1000, thick (#63610)
100 g Kremer Color Paste - Titanium White (#27000)
700 ml Water Sieve, fine Processing:
Dissolve 10 g of the Cellulose Glue K 1000 thick (#63610) in 700 ml of water.
Add the Plextol D 498 (#76000), Marble Dust (#58500) and Blanc Fixe (#58700).
To make the Gesso opaque, add 100 g Color Paste Titanium White (#27000).
Strain the gesso through a fine sieve.
This recipe will give about 1 liter of gesso.
Egg Tempera
Crack a fresh egg
and fill it into a glass with a screw cap.
Fill the empty shells of the egg with linseed oil varnish and add it to the egg
(the same volume as the egg).
Now shake everything well until the fluid becomes a smoothy emulsion.
Then fill the egg shells with dammar varnish and add it to the egg and the linseed oil varnish.
Shake everything well again until the fluid becomes a smoothy emulsion.
Fill the egg shells with water, add it to the emulsion and shake well again.
In this egg tempera (binder) stir in the pigment of your choice in a mortar or on a plate and grind until the fluid gets the viscosity of a yogurt.
Now the paint is ready to use.
Note: If necessary, the tempera can be diluted with some water.
Paper Adhesive
Paper Adhesive made of plant starch
Starch as a pure carbohydrate is used as an adhesive in the paper lamination and restauration for many centuries. Stir in the starch into water, cook-up once and let cool down. We offer the following starchs: #63440 Rice Starch #63451 Wheat Starch Powder #634778 Shofu Nori Powder
Coloring Concrete
Only very alkaline-stable pigments can be used to color concrete or cement-based mortars.
Please check our suitability list for cement-stable pigments! Particularly suitable for this application are the iron oxide pigments as well as manganese gray (#47510) and manganese black (#47501).
The amount of pigment depends on the desired color, but more than 4 weight% of pigment should not be added to pure cement.
If a mortar is supposed to be colored, that amount may already be too much, because the mortar will also contain aggregates and will not be able to bind as much pigment.
The pigment powder has to be mixed thoroughly with the cement powder.
Color pastes can be added to the cement together with the water. For light colors it is preferable to use white cement. Another possibility is to add selected white quartz sand, cristobalite or colored stone powder. Mind to mix the pigment thoroughly with the pigment, because pigment agglomerates could cause bleeding of the color.
Synthetic organic pigments are not suitable for outdoor applications, because they can be washed out in contact with water.
The cement matrix will react different to different pigments:
1. The pigment particle reacts with the cement and stabilizes the matrix: all red, brown and black iron oxide pigments
2. The pigment behaves like a sand particle: most metal oxides, inorganic pigments such as cobalt pigments, nickel-titanium-yellow, titanium dioxide
3. The pigment particle is a foreign body within the cement and will weaken the structure: all synthetic-organic pigments, clay minerals and similarly swellable materials.
The ratio between concrete and pigment depends on the particle size of the pigment. We recommend using the cement particle size distribution curve as a reference, since a certain ratio between cement and aggregate is required for concrete.
When a very fine pigment is added, the amount of cement has to be increased. Coarse-grained pigment should rather be regarded like sand.